Event Documentation

5 October 2006

Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.

‘itos/src/dsp/event’ contains source files for the following programs:
1. dsp_evtdsp The C/Motif program currently used with TCW software.

2. EvtdspApp A java applet/application for viewing event messages. It implements only
a subset of dsp_evtdsp functions, omitting things like opening connections to more than
one source.

3. evtforward A java background application that forwards event messages from a source
to multiple consumers. Typical sources are dsp_evtdsp or another instance of evtfor-
ward. Typical consumers are dsp_evtdsp, EvtdspApp or another instance of evtforward.

Message formats Describes messages used by all three programs as well as several other
ITOS programs such as dsp_evtlog.

5 October 2006

Chapter 1: dsp_evtdsp 2

1 dsp_evtdsp

Dsp_evtdsp is a process which can receive event messages from dsp_evtlog on stdin. It can
also receive messages over sockets from other instances of dsp_evtdsp and from evtforward
and send messages from dsp_evtlog to other dsp_evtdsp and to evtforward.

The user can open views on events from any of the sources mentioned above and can
specify which message types are displayed in each view.

Command line arguments
Message formats
Overall organization

1.1 dsp_evtdsp command line arguments

-help

When "-help" is present on the command line, dsp_evtdsp prints information
about its command line arguments and exits.

-port "num"

Instructs dsp_evtdsp to open port "num" as its server port instead of the default,
6066.

"view"

Instructs dsp_evtdsp to open a view named "view", displaying events from the
local dsp_evtlog. (Note that there is no hyphen before the view name.)

This view name can be followed by a comma and a comma-separated list of
event specifications. Event specifications include:

+* => Add all events.

-* => Delete all events.

+N => Add event number N.
-N => Delete event number N.

By default, all events are displayed in the view.
-getView "source" "view"

Instructs dsp_evtdsp to open a view named "view" displaying event messages
from "source". If the source is another instance of dsp_evtdsp using the de-
fault port number, "source" can simply be the name of the node where that
dsp_evtdsp is running. Otherwise "source" should use the format "node>port".

As described above, "view" may be followed by a comma and a
comma-separated list of event specifications.

The command line may contain any number of -getview directives.

1.2 Overall organization of dsp_evtdsp

5 October 2006

Chapter 1: dsp_evtdsp 3

1.2.1 External connections

When dsp_evtdsp is run with dsp_evtlog, the script that starts them usually pipes the out-
put of dsp_evtlog to dsp_evtdsp. That output consists of event messages, which dsp_evtdsp
reads on stdin. Before the main application loop is started, function ReadEventMessages
is installed as the stdin message handler.

Dsp_evtdsp can also exchange event messages via sockets with other processes, including
those running on other machines. In order to insulate dsp evtdsp from network prob-
lems, a child process is spawned which handles all socket connections with other processes.
Dsp_evtdsp communicates with its child, named dsp_remote, over pipes. Sending an event
message to a remote dsp_evtdsp involves sending the message to the local child over a pipe,
which sends it to the remote child over a socket, which sends it to its parent dsp_evtdsp
over a pipe.

When the user wants to get a view of events from a remote dsp_evtdsp, she performs
two steps:

1. Establishes a connection with the remote dsp_evtdsp. This is done by bringing up the
manager window, selecting view/new display... and entering the name of the remote
dsp_evtdsp.

dsp_evtdsp reacts to this by sending an idOpenDisplay message to its child dsp_remote
instructing it to open a socket to the remote dsp_evtdsp. (message formats describes
messages between dsp_evtdsp and dsp_remote.)

2. Requests a view. This is done by bringing up the manager window, selecting the tab
for the remote dsp_evtdsp, selecting view/get view... and entering a name for the view.

dsp_evtdsp reacts to this by sending an idGetView to dsp_remote, which forwards the
message to the remote dsp_evtdsp.

1.2.2 Major data structures

1.2.2.1 struct OpenDisplay

Each OpenDisplay structure corresponds to a page in the manager window. There is one
for the local process and one for every other process with which this process has a socket
connection. There is also one for local devices like a printer.

A new OpenDisplay struct is created when the user selects view/"new display..." in the
manager window. A new OpenDisplay struct is also created when a user on another process
gets a view of events from this process or sends a view to this process.

Some fields in OpenDisplay:
e char *name; The name for the process appearing on the manager tab.

e char *ownName; This field is needed because other processes can refer to this process
by a variety of strings. If the string used by the remote process is different from the
name field in the OpenDisplay for this process, that string is saved here and is used in
the "sending process" field in messages to that process.

5 October 2006

Chapter 1: dsp_evtdsp 4

View *viewsTo; A linked list of views owned by the remote process showing events
from this process. The OpenDisplay struct for the local process puts all of its views
into this list.

View *viewsFrom; A linked list of views owned by this process showing events from
the remote process.

OpenDisplay *next; Used to link all OpenDisplay structures into a single list pointed
to by the global firstDisplay.

OpenDisplay *nextFrom; Used to link structures of processes which send at least one
view to this process. The global fromRemote points to this list.

OpenDisplay *nextTo; Used to link structures of processes which receive at least one
view from this process. The global toRemote points to this list.

This field is also used to link the list of structures for processes which have no views
at the moment. The global emptyRemote points to this list. The toRemote and
emptyRemote lists are mutually exclusive so there’s no problem using the same field
to link the two lists.

If event messages are flowing both ways between this process and a remote process, the

OpenDisplay struct for the remote process will be in both the toRemote and fromRemote
lists and will have views in both its viewsTo and viewsFrom lists.

1.2.2.2 struct View

There is one View structure for every view displayed by this process and for each view

it sends to some other process.

Some fields in View:

char *name; The view’s name. If the view is displayed locally, this name is in the
view’s window header.

XmString str; Contains the same string as name. Used to put the display’s name into
the manager page.

OpenDisplay *display; The OpenDisplay that this view belongs to.

View *next Used to link the view into one of its OpenDisplay’s lists.

5 October 2006

Chapter 2: EvtdspApp 5

2 EvtdspApp

EvtdspApp was written primarily to be used as a java applet. It allows a user to open
views of events from an event source on the host from which it was downloaded. Class
EvtdspButton is derived from class Applet and is designed to appear in an html file. It
displays "Start" and "Quit" buttons and a text area.

When a user clicks "Start", a thread is started which executes class EvtdspApp, the
class which implements a subset of dsp_evtdsp’s functionality. EvtdspApp can also be run
as a standalone java application.

Overview gives a high-level introduction to classes and threads.
Html support describes what should be in an html file to run the applet. Parameters are
described there as well.
Application EvtdspApp describes how to run EvtdspApp as an application.
Classes describes all major classes and their methods.
Puzzles describes a few wierd things in the code possibly caused by the author’s lack of java
knowledge.

EvtdspApp is created from source files:
‘EvtdspButton. java’ Defines classes used only by the applet, not the application.

‘MsgBuffer. java’ Defines class MsgBuffer, which handles communications with other
processes.

‘EvtUtil. java’ Defines assorted utility classes which handle color and integer strings.

‘EvtdspApp. java’ The main file, defines the classes that implement all other function-
ality of EvtdspApp.

2.1 Overview of EvtdspApp

2.1.1 EvtdspButton

The init and start methods of class EvtdspButton are called when the html page is
displayed. Init creates two buttons, "Start" and "Quit", and a text area. The "Quit"
button is not active at this time. The start method insures that the main application class
(EvtdspApp) is accessable and is a thread.

Only one of the buttons is enabled at any time. Method actionPerformed is called
when the active button is clicked. If that is the "Start" button, an EvtdspApp thread is
created and started. When the "Quit" button is clicked, the EvtdspApp thread is killed.

2.1.2 EvtdspApp

The run method of class EvtdspApp is called whether this program is executing as
an applet or an application. It creates startup windows, starts an EventThread to read
messages from the event source, and waits for the user to kill the program. Its destroy
method closes sockets, streams and windows.

5 October 2006

Chapter 2: EvtdspApp 6

2.1.3 EventThread

One instance of EventThread is started by EvtdspApp. Its run method simply waits
for event messages over the socket from the event source process. When an event message
arrives, it is passed to the eventMsg method of the manager window.

When the user makes certain changes, such as adding or deleting a view or changing the
events displayed in a view, messages must be sent to the event server process. Methods for
sending those messages are defined in this class, but they run in the Java monitor thread.

If this thread finds that it has lost contact with the event source process, it goes into a
loop in which it tries to reconnect periodically. If it is successful, it requests all currently
active views from the server.

2.1.4 MgrWindow

This class implements the manager window. Most of its methods are called in response
to user actions in the manager window. An exception is method eventMsg, which is called
by the EventThread when an event message arrives. This method appends the text of the
new event to the views specified in the message.

2.1.5 Views

Every event view is an object of class View. Its visible components are a text area and
possibly scroll bars. The text area is an object of class CanvasTextArea. These objects
behave much like Java TextArea objects except that:

The program has control over whether the scroll bars are visible. This is useful in
implementing autoscrolling.

The program can distinguish clicks in the scroll bars from clicks in the text area.

The program maintains control over how much text is saved so a user can scroll back
to it.

The MgrWindow object maintains a list of the current views in an object of class
ViewList. Methods in this class add views to the list and delete views from the list. Those
methods execute in the Java monitor thread as a result of user actions. Other methods
traverse the current list of views. Those are called when an event is received and must
be written to the views which want it. Those methods execute in the event thread. Since
multiple threads access this list, all methods are synchronized.

2.1.6 Event message handling

This section summarizes what happens when a message arrives over the socket from the
event source process.

1. Method EventThread.run, which was blocked waiting for input, wakes and determines
that the input is an event message. It then calls EventThread.processEvent.

2. EventThread.processEvent removes the first two strings from the message just
received. Those strings give the names of the sending and receiving processes.
The remainder of the message, which begins with the event text, is passed to
MgrWindow.eventMsg.

5 October 2006

Chapter 2: EvtdspApp 7

3.

6.

MgrWindow.eventMsg looks at the strings in the message following the event text.
They are the names of the views where the message should be displayed. It passes the
message text to the appendText method of each of those views.

appendText appends the new message to its message queue and decides whether the
new message changes what is displayed in the view. If autoscrolling is on, the new
message is always displayed at the bottom of the window. Otherwise the new message
changes the view only if it forces a displayed line to be deleted or if the window is so
large that all text in the queue is visible. If the view is changed, repaint is called.

The call to repaint causes CArea.paint to be called. It simply calls
CanvasTextArea.paintText.

paintText determines which block of lines from the view’s text queue will be written
to the window, creates a BlockOfLines object, and then uses it to access the lines in
the queue and draw them in the window.

All of these functions execute in the EventThread thread.

2.1.7 Threads

1.

To summarize, three threads are active when this program is run as an applet:

The EvtdspApp thread. It creates the manager window, starts the event thread, and
creates any startup views. It then suspends itself and is resumed when either:

The user clicks the "Quit" button in the manager window.
The user clicks evtdspButton’s "Quit" button.

After that resumption, this thread cleans up and exits.

The eventThread, which receives event messages over a socket and distributes them
to views. All methods in class EventThread run in this thread except newView,
newFilter and deleteView. (Those methods are called in response to user actions
and send messages over the socket to the event source process.) In addition, Mgr-
Window.evetMsg, ViewList.getView and CanvasTextArea.appendText execute in this
thread.

The java monitor thread. All methods not mentioned above run in this thread. This
includes most methods in MgrWindow and View.

2.2 Html support for EvtdspApp

In an html file, the applet code should be given as "EvtdspButton.class".

Parameter names recognized by EvtdspApp and their values:

e PORT = An integer port number. The applet will connect to this port and request

event messages. The default is 6066, the port of the server socket opened by dsp_evtdsp.
(evtforward opens 6067 as its server port.)

e TEXT_FONT = The name of the font to be used in text components, including the

event-display window. The default is Dialog. Other fonts available to applets are
Helvetica, TimesRoman, Courier and Symbol. Applications have many more fonts.

5 October 2006

Chapter 2: EvtdspApp 8

e BUTTON_FONT = The name of the font used everywhere else, including on buttons.
The default is Helvetica.

e TEXT FONT _SIZE = An integer font size for the text font. The default is 14.
¢ BUTTON_FONT SIZE = An integer font size for the button font. The default is 14.
e VIEW_FG = The color used in view foregrounds. Value can be specified as a color

name, an ITOS color code (code_0, etc.) or three comma-separated integers giving rgb
values. The default is "white".

e VIEW_BG = The color used in view backgrounds. Values accepted are the same as
with VIEW_FG. The default is "0,0,140".

e VIEWi where "i" is an integer. The value should specify one startup view. If there are
n VIEW parameters, they must be named VIEW1, VIEW2, ..., VIEWn. The value
string consists of the following fields, separated by blanks or tabs:

1. The view name.

2. An event specification, using dsp_evtdsp filter format. By default, all events are
displayed.

3. The number of character columns in the view. The default value is 80.

4. The number of text rows in the view. The default value is 6.

5. The number of rows in the view which can be seen by scrolling. The default is
500.

6. Foreground color. Formats and default value are described above with VIEW _FG.
7. Background color. Formats and default value are described above with VIEW _FG.

8. A boolean specifying whether the view should be visible at startup. The default
is true.

9. The number of pixels between the left side of the view and the left side of the
screen. Negative numbers are ignored by the program. Zero seems to be ignored
by Motif.

10. The number of pixels between the top of the view and the top of the screen.
Negative numbers are ignored by the program. Zero seems to be ignored by Motif.

Only the name field is required. If a field is omitted, all following fields should be
omitted too. "def" is legal in all fields except the name field and gives the default
value.

Since blanks serve as field separators, no field can contain a blank.

An html file could look like this:

<HTML>

<HEAD>

<TITLE> Event Display </TITLE>

</HEAD>

<BODY>

<APPLET CODE="EvtdspButton.class" WIDTH=400 HEIGHT=200>

<PARAM NAME=PORT VALUE=6066>

<PARAM NAME=VIEW1 VALUE="stol_events -*,+15,+16,+17,+18,+19,+26,+27 45 10 def black cy
<PARAM NAME=VIEW2 VALUE="events'>

5 October 2006

Chapter 2: EvtdspApp 9

</APPLET>
</BODY>
</HTML>

2.3 Running EvtdspApp as an application

The following are examples of lines which can be typed at a shell prompt to start
EvtdspApp as an application:
java EvtdspApp -SERVER sunflower
java EvtdspApp -SERVER sunflower -PORT 6067
java EvtdspApp -SERVER sunflower -VIEW1 "stol_events -*,+15,+16,+17,+18,+19"
The -SERVER argument is required. It specifies the address of the socket from which
EvtdspApp will receive events.

All other command line arguments are identical to the html parameters. Parameter
names must be preceded by a hyphen and must be entered using upper case. Each parameter
value must consist of a single string.

2.4 Classes of EvtdspApp

BlockOfLines is used when painting views.
CanvasTextArea Implements the text area and scroll bars of a view window.
CArea Implements the text area of CanvasTextArea.
CmdParams Processes parameters from either the command line or an html file.
ErrWindow A window for displaying errors.
EventMsg A single string in a TextQueue.
EventThread Communicates with the event server.
EvtdspApp The main application class.
EvtdspButton The main applet class.
EvtGlobal A class defining various defaults.
FilterList Linked list of FilterViews.
FilterView Window for changing a view’s filter.
MgrWindow Implements the manager window.
StartupView One startup view.
StartupViewList The list of all startup views.
TextQueue Implements the queue of messages for a single View.
View Implements one view.
ViewDialog Queries the user for a new view name.
ViewList A linked list of View objects.
ViewPopup The View popup menu.

2.4.1 Class BlockOfLines

When a view is redrawn, the painting method needs a block of contiguous messages
from the view’s text queue. This is complicated by the fact that lines may be added to and
deleted from the queue during the painting process.

5 October 2006

Chapter 2: EvtdspApp 10

In the solution chosen here, the painting method requests a block from the text queue
before it begins painting. The request specifies the block relative to the most recent message.
The text queue responds to the request by storing the information it needs to identify the
block in a small object of this class and returning that object. The painting method then
repeatedly calls the queue’s nextLine method and passes this object to that method.

TextQueue stores its queue of event messages in a fixed-length array. Its member tail
is the offset in the array where the next message will be placed. The most recent message
is stored at tail - 1, the message before that at tail - 2, and so on. When tail gets to the
end of the array, it wraps around to zero.

Data members:

int newOffset; // Offset in the TextQueue array of the newest
// line in the block. This is the line which will
// be returned by the next call to "nextLine".

int oldOffset; // Offset of the oldest line in the block.

int prevTail; // The value of TextQueue’s tail pointer during the
// previous call to "nextLine". This is used to
// detect cases where so many lines were added to
// the queue between calls to "nextLine" that none of
// the requested lines remain in TextQueue.

int blockNum; // The value of TextQueue’s blockNum when this object
// was created. Used to tell if a newer block exists.
// If a newer block exists, painting is stopped on
// the older block.

Objects of this class are created and manipulated by two methods in TextQueue, re-
questBlock and nextLine. A rule that they both observe is that TextQueue’s tail pointer is
never in a block. Specifically, that means

if (01d0ffset <= newOffset)
// A simple block
tail <= o0ldOffset or tail > newOffset
else
// The block wraps around O in the TextQueue array.
tail <= o0ldOffset and tail > newOffset

If a call to requestBlock tries to create a block containing tail, or if tail moves so it is
within a block, the block’s 01d0ffset member is set equal to tail, so tail is no longer in the
block.

Methods:
boolean simple()

This method returns true if the block does not wrap around zero, that is, if newOffset
>= 0ldOffset.

boolean contains(int i)

This method returns true if "i" is in the block. If "i" equals 0ldOffset, it is not considered
to be in the block.

5 October 2006

Chapter 2: EvtdspApp 11

2.4.2 class CanvasTextArea

class CanvasTextArea extends Panel implements AdjustmentListener

An object of this class implements the visible parts of a single view. The main parts are
a text area, implemented by a CArea object, and optionally two java Scrollbars.

Data members:

TextQueue text; // All the text which can be seen by scrolling

// the view.
CArea textArea; // Object that displays the visible part of text.
Scrollbar vbar; // Vertical scroll bar. Is null when text is

// autoscrolling (so the scrollbar is hidden).
Scrollbar hbar; // Horizontal scroll bar.
int leftCol = 0; // Number of pixel columns scrolled to the left of

// the window.

int canvasPixRows; // Number of pixel rows currently in textArea.

int bottomPixRow; // Number of pixel rows from the current bottom of
// textArea to the top of the oldest line.
// Used only when a vertical scrollbar is visible.

int charHeight; // Height of a character in pixels.

int charWidth; // Width of ’M’ in pixels. Used in horizontal scrolls.
int descHeight; // Height of a character descender in pixels.
FontMetrics fm; // Metrics for the font.

Color fg; // The default foreground color.

View parent; // The View this object belongs to.

Font font; // The font being used.

// Constants used in calls to the constructor.
final static boolean makeHScroll = true;

final static boolean noHScroll = false;

final static boolean makeVScroll = true;

final static boolean noVScroll = false;

Every View object has one of these objects as its textArea data member. At one time
textArea was implemented as a java TextArea object. A CanvasTextArea object gives the
functionality of a TextArea object and in addition:

1. Scroll bars can be displayed or hidden at any time. That is done here when the user
selects "Autoscroll” from the view’s popup menu.

2. Mouse clicks in the text area can be distinguished from clicks in the scroll bars. This
is important in knowing when to display the view’s popup menu.

3. The displayed text can be treated as a queue of specified length. Old text is discarded
when the queue overflows.

CanvasTextArea(View parent, int rows, int cols, int maxRows,
boolean hBar, boolean vBar)

CanvasTextArea(View parent, int rows, int cols, int top, int left,
int maxRows, boolean hBar, boolean vBar, String fg, String bg)

5 October 2006

Chapter 2: EvtdspApp 12

CanvasTextArea(View parent, int rows, int cols, int maxRows,
boolean hBar, boolean vBar, String fg, String bg, Font font)

void constructor(View parent, int rows, int cols, int top, int left,
int maxRows, boolean hBar, boolean vBar, String fgStr, String bgStr,
Font font)
The three constructors substitute defaults for any values not specified and then call
constructor. (Default color values are specified in EvtGlobal.)

rows and cols specify the number of text rows and columns in the window.

top and left, if both are non-negative, specify the position of the top left corner of
the view in pixels.

maxRows is the maximum number of rows of text that will be saved before discarding
the oldest text.

hbar and vbar specify whether horizontal scroll bars should be displayed initially.
fgStr and bgStr are strings giving foreground and background colors.
font is the font to be used for displaying text.

void paintText(Graphics g)

This method is called when it is time to redraw the text area of the window. Text is
drawn starting at the bottom of the window.

Two local variables are used:

1. i is an integer giving the index in text of the line of text currently being drawn. The
last line added to text has index 0. (text is a TextQueue object. Its getLine method
is used here.)

2. Dbase is an integer giving the Y pixel coordinate of the bottom line of text in the window.

Algorithm:

if (vbar is null)
// We are autoscrolling.
i=0
base = descHeight above the bottom of the window.
else
Use text.length() and bottomPixRow to set i to the index of
the bottom line. It may be only partially visible.
Set base
endif

While(There is still room in the window
and there is more text to draw)
Get text line i.
if (the line has a non-default background)
Draw a rectangle in its background color.
endif
if (the line’s foreground color is different from the current color)
Set the foreground color.
endif

5 October 2006

Chapter 2: EvtdspApp 13

Draw the line of text at -leftcol, base.
Subtract charHeight from base.
Add one to i.

endwhile

boolean appendText(String str)

This method is called by View.appendText when a new event message is received from
the event server. str is the text of the new message. This method adds it to this view.

str is passed to text.append so it is appended to the text queue. Subsequent actions:

if (autoscrolling)
Just repaint.
else if(this string changes the length of the text queue)
if (the text does not fill the window)
Increment bottomPixRow.
Repaint.
else
Modify the maximum value of the scrollbar.
endif
else
// The oldest line was just removed from the queue.
if (That oldest line was not visible)
Move the scrollbar.
else
Repaint.
endif
endif

Finally, the value returned by text.append() is returned. That value is true if str
contained a BEL character.

void sizeChanged ()
This method is called by View.ComponentResized when the user resizes the window.
It sets canvasPixRows by calling textArea’s getSize method.

If the vertical scroll bar is visible, its values are reset. The goal is to keep the same line
displayed at the bottom of the window.

void toggleAutoscroll()

If vbar is currently null, this method creates a vertical scrollbar. Otherwise, it removes
the scrollbar and sets vbar to null.

public void adjustmentValueChanged (AdjustmentEvent e)

This method implements the AdjustmentListener interface. It is called when the user
adjusts either of the scrollbars.

When the vertical scrollbar is adjusted, bottomPixRow is updated, and when the hori-
zontal bar is adjusted, 1leftCol is updated. In both cases, the text area is then repainted.

2.4.3 class CArea

5 October 2006

Chapter 2: EvtdspApp 14

class CArea extends Canvas
This class implements the text area part of CanvasTextArea.
Data members:

Dimension minSize; // The initial size of the area.
CanvasTextArea parent; // The CanvasTextArea this object is
// contained in.

The constructor is:
CArea(int rows, int cols, Color bg, CanvasTextArea parent)

rows and cols specify the initial size of the canvas in pixels. They are used to set
minSize. bg specifies the default background color. parent specifies the object whose
paintText method is called by paint.

The constructor creates an instance of the inner class MAdapter and registers it as the
mouse listener for this CArea.

class MAdapter extends MouseAdapter
This is an inner class of CArea. It defines a single method:
public void mouseClicked(MouseEvent e)

This method is called for mouse clicks in the canvas area. If the third mouse button was
clicked and the popup menu is not currently visible, the popup menu is displayed at the
location of the click.

If the popup menu is already visible, it is hidden.

Three other methods are defined:

1. preferredSize() returns minumumSize().
2. minimum§Size() returns data member minSize.

3. paint(Graphics g) calls parent.paintText(g).

2.4.4 class CmdParams

class CmdParams

This class allows a program to access startup parameters through a common interface
whether they come from the command line or an html file. (That is, whether the program
is run as an application or applet.)

When parameters are given on a command line, it is assumed that the parameter name
is preceded by a hyphen and that the parameter value is a single string which does not
begin with a hyphen.

//*** Data members *¥x

String[] args; // Used only when run as an application.

Applet applet; // Used only when run as an applet.

final String emptyParam = ""; // Sometimes returned by getValue.
public CmdParams(String[] args)

public CmdParams(Applet applet)

These constructors set the data member passed to them. The first constructor is used
by applications, the second by applets.

5 October 2006

Chapter 2: EvtdspApp 15

String getValue(String paramName)

This method returns the value associated with the parameter named "paramName".
Null is returned if "paramName" is not defined. If "paramName" appears on the command
line with no value emptyParam, an empty string, is returned.

If applet is non-null, this method looks for the parameter’s value in the html file by
calling applet .getParameter. Otherwise this method looks through args for the parame-
ter.

2.4.5 class ErrWindow

class ErrWindow extends Frame implements ActionListener

One object of this class is instantiated by EvtdspApp for displaying errors. It contains
a 2-line text area and an OK button.

Data members:

Button okButton;
TextArea textArea;

Text is written directly to textArea by EvtdspApp.nonFatalError().
The following functions are defined:

1. A constructor which does not take any arguments and which creates components for
the text area and button.

It creates an instance of inner class DWAdapter and registers it as the window listener.

2. actionPerformed implements the ActionListener interface. It responds to clicks on
the OK button by hiding this window.

3. Inner class
class DWAdapter extends WindowAdapter
Defines the single method:
public void windowClosing(WindowEvent event)

which detects user clicks on the frame’s "Close" menu item and hides this window.

2.4.6 class EventMsg

An object of this class contains the text of an event message with foreground and back-
ground colors.

Data Members:

String text; // Event text, without formatting prefix.

Color fg; // Foreground color.

Color bg; // background color.
// These colors are left null if the event message
// does not specify them, or if they are specified as
// 0 (default background color) or 7 (default
// foreground color).

Class TextQueue implements a queue of these objects.

There are no method members in this class.

5 October 2006

Chapter 2: EvtdspApp 16

2.4.7 class EventThread

class EventThread extends Thread

One instance of this thread is created by EvtdspApp.run. Methods of this class connect
to the event server and exchange messages with it. The run method waits for messages
from the event server and passes them to MgrWindow.eventMsg()

Method connectToEvents, defined here, is called by EvtdspApp.run before this class’s
run is called because error-handling for a socket failure is easier in that thread.

Three other methods, newView, deleteView and newFilter, are defined in this class
because they write to the event socket, but they don’t run in this thread. They are called
by functions in the manager window class.

Data members:

EvtdspApp app; // Pointer to the EvtdspApp object.
Socket eventSocket; // Socket to events.

String host; // Address of eventSocket.

int port; // Port number of eventSocket.
DataInputStream is; // Input stream for reading events.

DataOutputStream os; // Output stream for writing to the

// the event server.
MsgBuffer msgBuffer; // Used by methods running in this thread.
MsgBuffer sendBuffer;// Used by other threads.

final int waitMillis = 5000; // When we are not in contact with the
// event server, we sleep this many milliseconds
// between attempts to reconnect.

String sendDspName; // This string is used as sendProc in messages
// to the event server. See Evtdsp messages.

EventThread (String host, int port, EvtdspApp app)
This constructor sets data members host, port and app to its arguments. It then

creates a name from this applet consisting of the string "applet" followed by the time.
Finally, it allocates buffers msgBuffer and sendBuffer.

String connectToEvents()
This method connects to the server socket at host, port. It sets data members

eventSocket, is and os. If all goes well, null is returned. Otherwise an error string is
returned.

This method is called by EvtdspApp.run before this thread is started. This is done
because if the method is not successful in connecting to the event server, EvtdspApp wants
to know about it immediately, since it cannot proceed farther.

public void run()
Algorithm for this method:

while(the user has not quit)
Wait for a message on eventSocket.
if (the user quit)
return

5 October 2006

Chapter 2: EvtdspApp 17

else if(The socket is closed)
Call method reconnect.
else if(some other error)
Pass an error string to app.nonFatalError().
else if(The message is an event message)
Call method processEvent to handle it.
else
Error "Strange message type received"
endif
end repeat

This thread is stopped when some other thread calls app.wake, which sets userQuit to
true.

protected void processEvent ()

When this method is called, msgBuffer contains an idEvent message just received from
the event server. This method deletes strings from msgBuffer so that the next string is the
event text. msgBuffer is then passed to MgrWindow.eventMsg.

private void reconnect()

This method is called when it appears that we have lost contact with the event server.
It tries to reconnect to the server every waitMillis milliseconds until it is successful. After
it reconnects, it requests all views that are currently open.

Algorithm:

repeat
Close the socket to the event server.
Write an error message saying contact has been lost.
repeat
Try to reconnect.
if (unsuccessful) Sleep for waitMillis.
until(successfully reconnected or the user quit)
Request all views from the event server.
until(view-request messages are successfully sent or the user quits)
Hide the error message window.

boolean requestViews()

When this method is called, we have just reconnected to the event server after a break
in connection. This function sends a request message for all current views. It returns true
if all goes well, false otherwise.

boolean newView(String name, long filter)
boolean newView (String name, long filter, MsgBuffer buf)

The first method is called by the manager window thread when the user requests a new
view. It calls the second method with sendBuffer as the third argument.

The second method can be called by the first, as mentioned above, or by method
requestViews after we reconnect to the event source. The third argument in that call
is msgBuffer. This method constructs an idGetView message in its third argument and
sends it to the event server.

boolean newFilter (String name, long filter)

5 October 2006

Chapter 2: EvtdspApp 18

This method is called by the manager window thread when the user changes the filter
for a view. This method constructs an idNewSelection message in sendBuffer and sends
it to the event server.

void deleteView (String name)

This method is called by the manager window thread when the user closes a view. This
method constructs an idCloseView message in sendBuffer and sends it to the event server.

void closeSocket ()

If field socket is non-null, this method closes fields socket, is and os.

2.4.8 class EvtdspApp

public class EvtdspApp extends Thread

When this program is run as an application, this thread is invoked directly. When run
as an applet, EvtdspButton.actionPerformed() starts this thread when the user clicks its
button.

Data members:

boolean inAnApplet = true;
EvtdspButton parentButton = null; // Used when we are started

// by an EvtdspButton. Normally this field is null

// if and only if inAnApplet is false.
boolean userQuit = false; // Set true when the user wants

// to quit.
MgrWindow mgrWindow ; // The manager window.
EventThread eventThread;// The thread that will connect to the

// event server and receive events.
ErrWindow errWindow; // A window where user errors are displayed.
EvtGlobal global;
StartupViewList startupList; // The list of views

// specified in the html page parameters.
CmdParams cmdParams; // Used to process parameters.

// Allocated in the constructors.

final int defaultPort = 6066;

// host is set by EvtdspButton when we start as an applet,
// by readParams when started as an application.

String host;

String portString;

// Stuff to deal with platform-dependent bugs.
final int unknown 0;

final int Sun0S =
final int Solaris
final int Windows95
final int Window_16bit
final int FreeBSD = 5;

b

=

2;
= 3:

n -

4;

5 October 2006

Chapter 2: EvtdspApp 19

int os; // Set by the constructor to one of the constants above.

public EvtdspApp(String str, String[] args)
public EvtdspApp(String str, EvtdspButton parentButton)

The first constructor is used when the program is started as an application. The second
when the program runs as an applet. Both constructors allocate objects global, startupList
and emdParams. They also determine the current operating system and set os. The only
current use of os is in View.handleEvent.

public void run()

Algorithm of this method:

Process parameters.

if (running as an application and -SERVER not specified)
Write an error message and exit.

Convert font size strings to integers.

Convert default color strings into Color objects.

Create a manager window object.

Create an EventThread object for communications
with the event server process.

Start that thread.

Start and display any startup windows.
if (there are no startup windows)

Make the manager window visible.
endif

repeat
suspend this thread.
until the user quits

Destroy sockets, streams and windows.

The suspend in the algorithm above is broken when methods in the manager window
object find that the user wants to quit and call this class’s wake method. EvtdspButton
calls wake when the user kills the program via that button.

public static void main(String[] args)

This method is called only when the program is run as an application. It creates an
instance of this class, sets its inAnApplet to false, and starts it.

This method then waits for the thread to exit and calls System.exit (0).
void wake()

This method sets userQuit to true and calls resume() to bring method run out of its
suspend call. It provides a way for MgrWindow and EvtdspButton to notify this thread
when the user wants to quit.

By setting userQuit to true, this method also signals the event thread to exit. That
thread frequently checks the status of userQuit, and exits when it becomes true.

public void destroy()

5 October 2006

Chapter 2: EvtdspApp 20

This method closes any open sockets, streams and windows. It is called by this thread’s
run when the user quits.

void fatalError (String msg)
If this program is being run as an application, msg is written to stderr and the application
exits.
If the program is run as an applet, msg is written to the text area on the html page. The
applet returns after calling this function.
void nonFatalError (String msg)
This method displays msg in an ErrWindow. It is used to display error text to the user,
such as
You must select a view before clicking on "Filter selected view".
If errWindow has not been allocated yet, this method creates it.
errWindow is placed just below the top of the manager window and made visible.
protected void readParams()
This method is called by run and it looks for values for its parameters. It uses cmd-

Params.getValue to obtain parameter values. That method examines the html page if this
program is running as an applet and examines the command line otherwise.

private void doViewSpec(String str)

"